
Multigrid at Extreme scales: Communication
Reducing Data Models and Asynchronous Algorithms

Mark Adams
Columbia University

2
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

3
Option:UCRL#!

Multigrid motivation: smoothing and coarse grid correction

smoothing

Finest Grid
Restriction (R)

Prolongation (P)
(interpolation)

The Multigrid
V-cycle

First Coarse Grid

smaller grid

4
Option:UCRL#!

Multigrid Cycles

V-cycle"
W-cycle"

F-cycle"One F-cycle can reduce
algebraic error to order
discretization error w/ as
little as 5 work units:
“textbook” MG efficiency"

5
Option:UCRL#!

  Define error: E(x) ≤ Ed(x) + Ea(x) (discrete. + algebraic)
  Assume error Ed(x) ≤ Chp (point-wise theory)
  Example: 2nd (p=2) order discretization & coarsening factor of 2.
  Induction hypothesis: require r ≥ Ea/Ed (eg, r=½)
  Define Γ rate error reduction of solver (eg, 0.1 w/ a V-cycle)

•  Can prove this or determine experimentally
•  No Γ w/defect correction – can use Γ of low order method.

  Use induction: Error from coarse grid: C(2h)2 + rC(2h)2
•  Alg. Err. Before V-cycle: Ea < C(2h)2 + rC(2h)2 – Ch2
- Actually should be +Ch2 but sign of error should be same

•  And we want ΓEa = Γ(C(2h)2 + rC(2h)2 - Ch2) < rEd ≤ rCh2
•  Γ = r/(4r + 3), 1 equation, 2 unknowns … fix one:
-  eg, r = ½ Γ = 0.1
-  If you want to use + Ch2 term then its Γ = r/(4r + 5)

Discretization error in one F-cycle (Bank, Dupont, 1981)

6
Option:UCRL#!

  function u = MGV(A,f)
•  If A coarsest grid

-  u ← A-1f
•  else

-  u ← Sν1(f, 0) -- Smoother (pre)
-  rH ← PT(f – Au)
-  eH ← MGV(PTAP, rH) -- recursion (Galerkin)
-  u ←u + PeH
-  u ← Sν2(f, u) -- Smoother (post)

  function u = MGF(Ai,f)
•  if Ai is coarsest grid

-  u ← Ai
-1f

•  else
-  rH ← R f
-  eH ← FGV(Ai-1, rH) -- recursion
-  u ← PeH
-  u ← u + MGV(Ai, f – Aiu)

Multigrid V(ν1,ν2) & F(ν1,ν2) cycle

7
Option:UCRL#!

  MG requires a smoother and coarse grid space
•  Columns of P

  Piecewise constant functions are easy
•  “Plain” aggregation

  Nodal aggregation, or partitioning
  Example: 1D 3-point stencil

Algebraic multigrid (AMG) - Smoothed Aggregation

B" P0"

“Smoothed” aggregation: lower energy of functions"
For example: one Jacobi iteration: P (I - ω D-1 A) P0"

Kernel vectors of
operator (B)"

8
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

9
Option:UCRL#!

Compressible resistive MHD equations in strong conservation form

Diffusive

Hyperbolic

Reynolds no.

Lundquist no.
Peclet no.

10
Option:UCRL#!

Fully implicit resistive compressible MHD Multigrid – back to the 70’s

  Geometric MG, Cartesian grids
•  Piecewise constant restriction R, linear interpolation (P)

  Red/black point Gauss-Seidel smoothers
•  Requires inner G-S solver be coded

  F-cycle
•  Two V(1,1) cycles at each level
•  Algebraic error < discretization error in one F-cycle iteration

  Matrix free - more flops less memory
•  Memory increasingly bottleneck - Matrix free is way to go
•  processors (cores) are cheap

-  memory architecture is expensive and slow (relative to CPU)

  Non-linear multigrid
•  No linearization required

  Defect correction for high order (L2) methods
•  Use low order discretization (L1) in multigrid solver (stable)
•  Solve L1 xk+1 = f - L2 xk + L1 xk

11
Option:UCRL#!

Magnetic reconnection problem

  GEM reconnection test
•  2D Rectangular domain, Harris sheet equilibrium
•  Density field along axis: (fig top)
•  Magnetic (smooth) step
•  Perturb B with a “pinch”

  Low order preconditioner
•  Upwind - Rusanov method

  Higher order in space: C.D.
  Solver

•  1 F-cycle w/ 2 x V(1,1) cycles per time step
-  Nominal cost of 9 explicit time steps
-  ~18 work units per time step

  Viscosity:
•  Low: µ=5.0D-04, η=5.0D-03, κ=2.0D-02
•  High: µ=5.0D-02, η=5.0D-03, κ=2.0D-02

  Bz: Bz=0 and Bz=5.0

•  Strong guide field Bz (eg, 5.0)
•  critical for tokomak plasmas

Current density T=60.0"

12
Option:UCRL#!

Bz = 0, High viscosity

  Time = 40.0, Δt = 1.
•  ~100x CFL on 512 X 256 grid

  2nd order spatial convergence
  Backward Euler in time
  Benchmarked w/ other codes
  Convergence studies (8B eqs)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

K
in

e
ti
c
 E

n
e
rg

y

t

GEM Reconnection Test - High Viscosity

Tue May 09 07:57:02 2006

Samtaney
Jardin
Lukin

Sovinec

13
Option:UCRL#!

Bz = 0, Low viscosity, ∇ ⋅ B = 0

  Time = 40.0, Δt = .1
  2nd order spatial convergence
  ∇ ⋅ B = 0 converges
  Kin. E compares well w/ other codes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40

K
in

e
ti
c
 E

n
e

rg
y

t

GEM Reconnection Test : Low Viscosity Case

Wed May 17 14:17:45 2006

Samtaney
Jardin
Lukin

Sovinec

14
Option:UCRL#!

Solution Convergence
µ=1.0D-03, η=1.0D-03, Bz=0

15
Option:UCRL#!

  Residual history (1st time step), high viscosity, B = 0
  F cycles achieve discretization error

•  Super convergence
  No Γ w/defect correct.
  Use Γ for L1

Residual history

16
Option:UCRL#!

Weak scaling – Cray XT-5

17
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

18
Option:UCRL#!

What do we need to make multigrid fast & scalable at exa-scale?

  Architectural assumptions:
•  Distributed memory message passing is here for a while
•  Future growth will be primarily on the “node”
•  Memory bandwidth to chip can not keep up with processing speed

-  Need higher computational intensity - “flops are free”…
  Multigrid issues:

•  Distributed memory network (latency) is still critical (if not hip)
-  Growth is on the node but distributed memory dictates data structures, etc.

-  Node optimizations can be made obsolete after distributed data structures added
-  Applications must use good distributed data models and algorithms
-  Coarse grids must me partitioned carefully - especially with F-cycles

-  Coarse grids put most pressure on network
-  Communication avoiding algorithms are useful here

-  But tedious to implement – need support compliers, source–to-source, DSLs, etc.
•  Computational intensity is low - increase with loop fusion (or streaming HW?)

-  Textbook V(1,1) multigrid does as few as 3 work unites per solve
-  Plus a restriction and interpolation.

-  Can fuse one set of 2 (+restrict.) & one set of 1 (+ interp.) of these loops
-  Communication avoiding can be added … data centric multigrid

19
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

20
Option:UCRL#!

Case study: Parallel Gauss-Seidel Algorithm

  Standard CS algorithm (bulk synchronous) graph coloring:
•  Color graph and for each color:
-  Gauss-Seidel process vertices
-  communicate ghost values (soft synchronization)

  3, 5, 7 point stencil (1D, 2D, 3D) just two colors (not bad)
  3D hexahedra mesh: 13+ colors (lots of synchronization)

•  General coloring also has pathological cache behavior
  Exploit domain decomposition + nearest neighbor graph

property (data locality) + static partitioning
  Instead of computational depth 13+

•  have computational depth about 4+ (3D)
-  The number of processors that a vertex talks to
-  Corners of tiling

  Completely asynchronous algorithm

21
Option:UCRL#!

Locally Partition (classify) Nodes

}Boundary nodes

}Interior nodes

22
Option:UCRL#!

Schematic Time Line
Note: reversible

23
Option:UCRL#!

Cray T3E - 24 Processors – About 30,000 dof Per Processor

Time →"

24
Option:UCRL#!

Cray T3E - 52 processors – about 10,000 nodes per processor

Time →"

25
Option:UCRL#!

Lesson to be learned form parallel G-S

  Exploit finite sized domains
•  Domains of order stencil width

  Exploit static partitioning to coordinate parallel
processing

  Technique applicable to any level of memory hierarchy
  Overlap communication and computation
  Exploit “surface to volume” character of PDE graphs

26
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

27
Option:UCRL#!

Implementations

  These ideas implemented in parallel FE framework Olympus
& AMG solver Prometheus

-  Gordon Bell prize 2004.
  And in new unstructured geometric MG & smoothed

aggregation AMG implementation in PETSc (PC GAMG):
-  -pc_type gamg –pc_gamg_type sa

•  Rely on common parallel primitives to
- Reduce code size
- Amortize cost of optimization & of porting to new

architectures/PMs
•  PETSc has rich set of common parallel primitives:
- GAMG ~2,000 lines of code
- Prometheus ~25,000 lines of code
-  About 20K of this implements GAMG functionality

28
Option:UCRL#!

New aggregation algorithm for SA

  My old aggregation algorithm is complex, don’t want to reimplement, want
to use standard PETSc primitives if possible

  Independent sets are useful in coarsening
•  Independent set: set of vertices w/o edges between each other
•  Maximal: can not add a vertex and still be independent

  MIS(k) (MIS on Ak) algorithm is well defined & good parallel algorithms
•  “Greedy” MIS algorithms naturally create aggregates

  Rate of coarsening critical for complexity
•  Slow coarsening helps convergence at expense of coarse grid complxty
•  Optimal rate of coarsening for SA for 2nd order FEM is 3x
-  Recovers geometric MG in regular grid
-  Results in no stencil growth on regular grids

  MIS(2) provides a decent coarsening rate for unstructured grids
  MIS/greedy aggregation can lead to non-uniform aggregate sizes
  New “aggregation smoothing” with precise parallel semantics and use of

MIS primitives.

29
Option:UCRL#!

  Drop small edges from graph G induced by matrix
•  G = D-½(AAT)D-½

•  If Gij < θ, then drop from Graph (eg, θ = 0.05)
  Use MIS(2) on G to get initial aggregates

  Greedy (MIS(1) like algorithm) modified aggregates

New aggregation algorithm for SA

30
Option:UCRL#!

Results of new algorithm Histogram of aggregate sizes

643 Mesh (262144 nodes)
First order hex mesh of
cube

31
Option:UCRL#!

Weak Scaling of SA on 3D elasticity

Cray XE-6 (Hopper)
  Weak scaling of cube

•  81,000 eqs / core
  8 node “brick” elements
  F-cycles
  Smoothed aggregation
  1 Chebyshev pre & post

smoothing
  Dirichlet on one face only
  Uniform body force

parallel to Dirichlet plane

Performance
Cores 27 216 1,728 13,824
N (x106) 2.2 17.5 140 1,120
Solve Time 4.1 4.9 5.6 7.0
Setup (1) 5.2 6.1 13 28
S (2) partit. 9.2 11 21 155
Iterations 11 12 12 14
Mflops/s/
core

334 314 276 257

32
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

33
Option:UCRL#!

Prolongation + correct"

Smoothν2"

Coarse grid"
Fine grid"

Restrict (linear)"

Residual"

Smoothν1"

  MG algorithm: Sequential with parallel primitives
•  Common way to think and code.

  Problem: poor data reuse, low comp. intensity, much data movement
  A Solution: loop fusion (eg, C. Douglas et. al.)

•  “Vertical” partitioning of processing instead of (pure) “horizontal”
-  Vertex based method with linear restriction & prolongation
-  Fuse: one loop; course grid correction; 2nd loop
-  Data dependencies of two level MG,1D, 3-point stencil:

Data Centric Multigrid - V(1,1)

MGV"

Off proc data to receive"

34
Option:UCRL#!

Unlock"

Restrict (linear)"

Residual"

Smoothν1"

Coarse grid"

Fine grid"

Processor (memory) domain" Shared memory domain"

  Approach to fusing 1st leg of V-cycle, 1D, 3-point stencil
•  One smoothing step with simple preconditioner (ie, no new data dependencies)
•  Residual
•  Restriction

  Overlap communication and computation & aggregate messages w/ multiple states
•  Communication avoiding

  Multiple vectors (lhs, rhs, res, work) and vector ops (AXPY,etc.) not shown
  Arrows show data dependencies (vertical, self, arrows omitted)
  Processor domain boundary (left) w/ explicit message passing
  Shared memory domain (right) “unlocks” memory when available
  Boundary processing could be asynchronous
  Multiple copies of some data required (not shown) at boundaries and ghost regions

Hierarchical memory (cache & network) optimization - fusion

Send"

Receive"

35
Option:UCRL#!

C. Douglas et.al."

Chombo"

Multigrid V(ν1,ν2) with fusion

  function u = MGV(A,f)
•  If A coarsest grid
- u ← A-1f

•  else
- u ← Sν1(f, u) -- Smoother (pre)
- r ← f – Au
- rH ← Rr
- eH ← MGV(RAP, rH) -- recursion (Galerkin)
- u ←u + PeH

- u ← Sν2(f, u) -- Smoother (post)

36
Option:UCRL#!

Numerical tests

  Reference Implementation of
 first leg of V(1,1) cycle

•  2D 5-point FV stencil
•  Linear interp./prol.
•  ~800 lines of FORTRAN
•  Horrible to code!

  Compare with standard implementation
•  Non-blocking send/recv
•  Overlap comm. & comp.
•  ~400 lines of FORTRAN

  Cray XE-6 at NERSC
•  Four levels of MG
•  256 x 256 and 64 x 64 fine grid

  I am not a good compiler!

37
Option:UCRL#!

  Equations solvers are too big to fail
  Multigrid is a shovel ready algorithm
  Good distributed memory implementations are hard and

getting harder with deep memory architectures
  Many-core node, data centric algorithms (loop fusion,

GPUs,…) are not well suited to FORTRAN/C
  Need compiler/tools/language support

•  of some sort …

Conclusion

38
Option:UCRL#!

Thank you

39
Option:UCRL#!

2D, 9-point stencil,1st leg of V(3,3) w/ bilinear restriction

Smooth 1"
Smooth 2"
Smooth 3"
Residual"
Restriction"

Send"
Receive"

Initial data"
Complete"

40
Option:UCRL#!

  Solver work complexity:
•  M iterations * flops/iteration
•  All components of MG can have O(N) work complexity

-  Optimal – its takes O(N) work to print the solution
•  1D C-cycle work complexity: C*N*(1+1/2+1/4+1/8…) < 2*C*N = O(N)

  Parallel complexity – work depth
•  V-cycle has O(log(N)) work depth

-  Optimal – Laplacian is fully coupled
-  ie, Green’s function has global support

-  Same as a dot product
•  F-cycles: O(log2 (N))

A word about parallel complexity

Size of these domains - parameter"

41
Option:UCRL#!

Solver Algorithm issues past and future

  Present and future: memory movement limited
  70’s had similar problems as today, and what we see as the future

•  Then: couldn’t afford memory – matrix free
•  Now: can’t afford to architect it and use it

  80’s were pernicious:
•  Ubiquitous uniform access memory and big hair …
•  Big memory did allow AMG and direct solvers to flourish

  Solutions that work on exa-scale machines … look to the 70’s
•  Low memory, matrix free, algorithms
•  Perhaps more regular grids as well

  Multigrid can solve with spatial/incremental truncation error accuracy
•  With work complexity of as low as ~6 residual calculations (work units)
•  On the model problem: low order discretization of Laplacian

-  Proven 30 years ago
•  “Textbook” multigrid efficiency

  No need to compute a residual (no synchronous norm computations)
  No need for CG’s synchronous dot products
  MG is weakly synchronized but this comes from the elliptic operator complexity

•  no way around it
  MG has O(N) work complexity in serial, O(log(N)) work depth in parallel

•  F-cycles, required for truncation accurate solutions, is O(log2(N))
  Work complexity looks less relevant now – “memory movement” complexity?

42
Option:UCRL#!

Verify 2nd order convergence
  2nd order spatial accuracy

•  Achieved with F-cycle MG solver
  Bz = 0, high viscosity
  Up to 1B cells (8B equations)

43
Option:UCRL#!

Multigrid performance - smoothers

  Multigrid splits the problem into two parts
•  Coarse grid functions (MG method proper) - takes care of scaling
•  Smoother (+ exact coarse grid solver) - takes care of physics

  Smoothers, where most of flops are – important for performance opt.
  Additive MG smoother requires damping

•  Be = (I –(B1 + B2 + …Bm)A)e
•  Good damping parameter not always available
-  eg, non-symmetric problems

•  Krylov methods automatically damp
-  But not stationary & have hard synchronization points

  Multiplicative smoothers (eg, Gauss-Seidel)
•  Be = (I – B1A) (I – B2A) … (I – BmA)e
•  Excellent MG smoother in theory
•  Distributed memory algorithm is a hard problem
-  Exploit nature of FE/FD/FV graphs …

44
Option:UCRL#!

Common parallel primitives for AMG

  Matrix matrix products:
•  A i+1 = PT Ai P
•  P = (I – ωD-1A)P0

  Computing (re)partitioning (ParMetis)
  Moving matrices (repartitioning)
  Maximal Independent Sets of Ak - MIS(k)

•  Useful mechanism for aggregation
•  Want coarsening factor of about 3
- This is perfect on regular hexahedra mesh

45
Option:UCRL#!

Unstructured geometric multigrid

  Select coarse points
•  MIS(1)

  Remesh (TRIANGLE)
  Use finite element shape

functions for restriction/
prolongation

  Example: 2D square
scalar Laplacian with
“soft” circle

46
Option:UCRL#!

  Multigrid has theoretically optimal parallel complexity
•  “Data movement” complexity?

  Log(N) computational depth - not enough parallelism available on coarse grids
  Coarse grid complexity is main source of inefficiency at extreme scales
  AMG issues: Support of coarse grid functions tend to grows

•  Independent sets are useful in coarsening
-  Independent set: set of vertices w/o edges between each other
-  Maximal: can not add a vertex and still be independent

•  The maximum independent set give 33 (27) aggs, every 3rd point on 3D cart. grid
-  This is perfect for SA - no support growth on coarse grids & recovers geo. MG

•  But support grows on unstructured problems, for example consider
-  stencil grows from 27 to 125 points (extra layer)
-  One vertex/proc – communicate with ~124 procs
-  33 vertex/proc – communicate with ~26 procs

  Thus, coarse grid memory complexity increases communication
  Amelioration strategy: use same basic idea as in parallel G-S:

•  Keep processor sub-domains from getting tiny (at least a few “stencils”)
•  Reduce active processors (eg, keep ~500 equations per processor)

-  This leads to need to repartition if original data was not recursively partitioned
-  No data locality with randomly aggregating sub-domains

Coarse grid complexity at extreme scales

