
Multigrid at Extreme scales: Communication
Reducing Data Models and Asynchronous Algorithms

Mark Adams
Columbia University

2
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

3
Option:UCRL#!

Multigrid motivation: smoothing and coarse grid correction

smoothing

Finest Grid
Restriction (R)

Prolongation (P)
(interpolation)

The Multigrid
V-cycle

First Coarse Grid

smaller grid

4
Option:UCRL#!

Multigrid Cycles

V-cycle"
W-cycle"

F-cycle"One F-cycle can reduce
algebraic error to order
discretization error w/ as
little as 5 work units:
“textbook” MG efficiency"

5
Option:UCRL#!

  Define error: E(x) ≤ Ed(x) + Ea(x) (discrete. + algebraic)
  Assume error Ed(x) ≤ Chp (point-wise theory)
  Example: 2nd (p=2) order discretization & coarsening factor of 2.
  Induction hypothesis: require r ≥ Ea/Ed (eg, r=½)
  Define Γ rate error reduction of solver (eg, 0.1 w/ a V-cycle)

•  Can prove this or determine experimentally
•  No Γ w/defect correction – can use Γ of low order method.

  Use induction: Error from coarse grid: C(2h)2 + rC(2h)2
•  Alg. Err. Before V-cycle: Ea < C(2h)2 + rC(2h)2 – Ch2
- Actually should be +Ch2 but sign of error should be same

•  And we want ΓEa = Γ(C(2h)2 + rC(2h)2 - Ch2) < rEd ≤ rCh2
•  Γ = r/(4r + 3), 1 equation, 2 unknowns … fix one:
-  eg, r = ½  Γ = 0.1
-  If you want to use + Ch2 term then its Γ = r/(4r + 5)

Discretization error in one F-cycle (Bank, Dupont, 1981)

6
Option:UCRL#!

  function u = MGV(A,f)
•  If A coarsest grid

-  u ← A-1f
•  else

-  u ← Sν1(f, 0) -- Smoother (pre)
-  rH ← PT(f – Au)
-  eH ← MGV(PTAP, rH) -- recursion (Galerkin)
-  u ←u + PeH
-  u ← Sν2(f, u) -- Smoother (post)

  function u = MGF(Ai,f)
•  if Ai is coarsest grid

-  u ← Ai
-1f

•  else
-  rH ← R f
-  eH ← FGV(Ai-1, rH) -- recursion
-  u ← PeH
-  u ← u + MGV(Ai, f – Aiu)

Multigrid V(ν1,ν2) & F(ν1,ν2) cycle

7
Option:UCRL#!

  MG requires a smoother and coarse grid space
•  Columns of P

  Piecewise constant functions are easy
•  “Plain” aggregation

  Nodal aggregation, or partitioning
  Example: 1D 3-point stencil

Algebraic multigrid (AMG) - Smoothed Aggregation

B" P0"

“Smoothed” aggregation: lower energy of functions"
For example: one Jacobi iteration: P  (I - ω D-1 A) P0"

Kernel vectors of
operator (B)"

8
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

9
Option:UCRL#!

Compressible resistive MHD equations in strong conservation form

Diffusive

Hyperbolic

Reynolds no.

Lundquist no.
Peclet no.

10
Option:UCRL#!

Fully implicit resistive compressible MHD Multigrid – back to the 70’s

  Geometric MG, Cartesian grids
•  Piecewise constant restriction R, linear interpolation (P)

  Red/black point Gauss-Seidel smoothers
•  Requires inner G-S solver be coded

  F-cycle
•  Two V(1,1) cycles at each level
•  Algebraic error < discretization error in one F-cycle iteration

  Matrix free - more flops less memory
•  Memory increasingly bottleneck - Matrix free is way to go
•  processors (cores) are cheap

-  memory architecture is expensive and slow (relative to CPU)

  Non-linear multigrid
•  No linearization required

  Defect correction for high order (L2) methods
•  Use low order discretization (L1) in multigrid solver (stable)
•  Solve L1 xk+1 = f - L2 xk + L1 xk

11
Option:UCRL#!

Magnetic reconnection problem

  GEM reconnection test
•  2D Rectangular domain, Harris sheet equilibrium
•  Density field along axis: (fig top)
•  Magnetic (smooth) step
•  Perturb B with a “pinch”

  Low order preconditioner
•  Upwind - Rusanov method

  Higher order in space: C.D.
  Solver

•  1 F-cycle w/ 2 x V(1,1) cycles per time step
-  Nominal cost of 9 explicit time steps
-  ~18 work units per time step

  Viscosity:
•  Low: µ=5.0D-04, η=5.0D-03, κ=2.0D-02
•  High: µ=5.0D-02, η=5.0D-03, κ=2.0D-02

  Bz: Bz=0 and Bz=5.0

•  Strong guide field Bz (eg, 5.0)
•  critical for tokomak plasmas

Current density T=60.0"

12
Option:UCRL#!

Bz = 0, High viscosity

  Time = 40.0, Δt = 1.
•  ~100x CFL on 512 X 256 grid

  2nd order spatial convergence
  Backward Euler in time
  Benchmarked w/ other codes
  Convergence studies (8B eqs)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

K
in

e
ti
c
 E

n
e
rg

y

t

GEM Reconnection Test - High Viscosity

Tue May 09 07:57:02 2006

Samtaney
Jardin
Lukin

Sovinec

13
Option:UCRL#!

Bz = 0, Low viscosity, ∇ ⋅ B = 0

  Time = 40.0, Δt = .1
  2nd order spatial convergence
  ∇ ⋅ B = 0 converges
  Kin. E compares well w/ other codes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40

K
in

e
ti
c
 E

n
e

rg
y

t

GEM Reconnection Test : Low Viscosity Case

Wed May 17 14:17:45 2006

Samtaney
Jardin
Lukin

Sovinec

14
Option:UCRL#!

Solution Convergence
µ=1.0D-03, η=1.0D-03, Bz=0

15
Option:UCRL#!

  Residual history (1st time step), high viscosity, B = 0
  F cycles achieve discretization error

•  Super convergence
  No Γ w/defect correct.
  Use Γ for L1

Residual history

16
Option:UCRL#!

Weak scaling – Cray XT-5

17
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

18
Option:UCRL#!

What do we need to make multigrid fast & scalable at exa-scale?

  Architectural assumptions:
•  Distributed memory message passing is here for a while
•  Future growth will be primarily on the “node”
•  Memory bandwidth to chip can not keep up with processing speed

-  Need higher computational intensity - “flops are free”…
  Multigrid issues:

•  Distributed memory network (latency) is still critical (if not hip)
-  Growth is on the node but distributed memory dictates data structures, etc.

-  Node optimizations can be made obsolete after distributed data structures added
-  Applications must use good distributed data models and algorithms
-  Coarse grids must me partitioned carefully - especially with F-cycles

-  Coarse grids put most pressure on network
-  Communication avoiding algorithms are useful here

-  But tedious to implement – need support compliers, source–to-source, DSLs, etc.
•  Computational intensity is low - increase with loop fusion (or streaming HW?)

-  Textbook V(1,1) multigrid does as few as 3 work unites per solve
-  Plus a restriction and interpolation.

-  Can fuse one set of 2 (+restrict.) & one set of 1 (+ interp.) of these loops
-  Communication avoiding can be added … data centric multigrid

19
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

20
Option:UCRL#!

Case study: Parallel Gauss-Seidel Algorithm

  Standard CS algorithm (bulk synchronous) graph coloring:
•  Color graph and for each color:
-  Gauss-Seidel process vertices
-  communicate ghost values (soft synchronization)

  3, 5, 7 point stencil (1D, 2D, 3D) just two colors (not bad)
  3D hexahedra mesh: 13+ colors (lots of synchronization)

•  General coloring also has pathological cache behavior
  Exploit domain decomposition + nearest neighbor graph

property (data locality) + static partitioning
  Instead of computational depth 13+

•  have computational depth about 4+ (3D)
-  The number of processors that a vertex talks to
-  Corners of tiling

  Completely asynchronous algorithm

21
Option:UCRL#!

Locally Partition (classify) Nodes

}Boundary nodes

}Interior nodes

22
Option:UCRL#!

Schematic Time Line
Note: reversible

23
Option:UCRL#!

Cray T3E - 24 Processors – About 30,000 dof Per Processor

Time →"

24
Option:UCRL#!

Cray T3E - 52 processors – about 10,000 nodes per processor

Time →"

25
Option:UCRL#!

Lesson to be learned form parallel G-S

  Exploit finite sized domains
•  Domains of order stencil width

  Exploit static partitioning to coordinate parallel
processing

  Technique applicable to any level of memory hierarchy
  Overlap communication and computation
  Exploit “surface to volume” character of PDE graphs

26
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

27
Option:UCRL#!

Implementations

  These ideas implemented in parallel FE framework Olympus
& AMG solver Prometheus

-  Gordon Bell prize 2004.
  And in new unstructured geometric MG & smoothed

aggregation AMG implementation in PETSc (PC GAMG):
-  -pc_type gamg –pc_gamg_type sa

•  Rely on common parallel primitives to
- Reduce code size
- Amortize cost of optimization & of porting to new

architectures/PMs
•  PETSc has rich set of common parallel primitives:
- GAMG ~2,000 lines of code
- Prometheus ~25,000 lines of code
-  About 20K of this implements GAMG functionality

28
Option:UCRL#!

New aggregation algorithm for SA

  My old aggregation algorithm is complex, don’t want to reimplement, want
to use standard PETSc primitives if possible

  Independent sets are useful in coarsening
•  Independent set: set of vertices w/o edges between each other
•  Maximal: can not add a vertex and still be independent

  MIS(k) (MIS on Ak) algorithm is well defined & good parallel algorithms
•  “Greedy” MIS algorithms naturally create aggregates

  Rate of coarsening critical for complexity
•  Slow coarsening helps convergence at expense of coarse grid complxty
•  Optimal rate of coarsening for SA for 2nd order FEM is 3x
-  Recovers geometric MG in regular grid
-  Results in no stencil growth on regular grids

  MIS(2) provides a decent coarsening rate for unstructured grids
  MIS/greedy aggregation can lead to non-uniform aggregate sizes
  New “aggregation smoothing” with precise parallel semantics and use of

MIS primitives.

29
Option:UCRL#!

  Drop small edges from graph G induced by matrix
•  G = D-½(AAT)D-½

•  If Gij < θ, then drop from Graph (eg, θ = 0.05)
  Use MIS(2) on G to get initial aggregates

  Greedy (MIS(1) like algorithm) modified aggregates

New aggregation algorithm for SA

30
Option:UCRL#!

Results of new algorithm Histogram of aggregate sizes

643 Mesh (262144 nodes)
First order hex mesh of
cube

31
Option:UCRL#!

Weak Scaling of SA on 3D elasticity

Cray XE-6 (Hopper)
  Weak scaling of cube

•  81,000 eqs / core
  8 node “brick” elements
  F-cycles
  Smoothed aggregation
  1 Chebyshev pre & post

smoothing
  Dirichlet on one face only
  Uniform body force

parallel to Dirichlet plane

Performance
Cores 27 216 1,728 13,824
N (x106) 2.2 17.5 140 1,120
Solve Time 4.1 4.9 5.6 7.0
Setup (1) 5.2 6.1 13 28
S (2) partit. 9.2 11 21 155
Iterations 11 12 12 14
Mflops/s/
core

334 314 276 257

32
Option:UCRL#!

Outline

  Establish a lower bound on solver complexity
•  Apply ideas to Magnetohydrodynamics (MHD)

  Distributed memory & communication avoiding MG
•  Asynchronous unstructured Gauss-Seidel

  New algebraic multigrid (AMG) in PETSc
•  Application to 3D elasticity and 2D Poisson solves

  Data centric MG: cache aware & communication avoiding
•  Application to 2D 5-point stencil V(1,1) cycle

33
Option:UCRL#!

Prolongation + correct"

Smoothν2"

Coarse grid"
Fine grid"

Restrict (linear)"

Residual"

Smoothν1"

  MG algorithm: Sequential with parallel primitives
•  Common way to think and code.

  Problem: poor data reuse, low comp. intensity, much data movement
  A Solution: loop fusion (eg, C. Douglas et. al.)

•  “Vertical” partitioning of processing instead of (pure) “horizontal”
-  Vertex based method with linear restriction & prolongation
-  Fuse: one loop; course grid correction; 2nd loop
-  Data dependencies of two level MG,1D, 3-point stencil:

Data Centric Multigrid - V(1,1)

MGV"

Off proc data to receive"

34
Option:UCRL#!

Unlock"

Restrict (linear)"

Residual"

Smoothν1"

Coarse grid"

Fine grid"

Processor (memory) domain" Shared memory domain"

  Approach to fusing 1st leg of V-cycle, 1D, 3-point stencil
•  One smoothing step with simple preconditioner (ie, no new data dependencies)
•  Residual
•  Restriction

  Overlap communication and computation & aggregate messages w/ multiple states
•  Communication avoiding

  Multiple vectors (lhs, rhs, res, work) and vector ops (AXPY,etc.) not shown
  Arrows show data dependencies (vertical, self, arrows omitted)
  Processor domain boundary (left) w/ explicit message passing
  Shared memory domain (right) “unlocks” memory when available
  Boundary processing could be asynchronous
  Multiple copies of some data required (not shown) at boundaries and ghost regions

Hierarchical memory (cache & network) optimization - fusion

Send"

Receive"

35
Option:UCRL#!

C. Douglas et.al."

Chombo"

Multigrid V(ν1,ν2) with fusion

  function u = MGV(A,f)
•  If A coarsest grid
- u ← A-1f

•  else
- u ← Sν1(f, u) -- Smoother (pre)
- r ← f – Au
- rH ← Rr
- eH ← MGV(RAP, rH) -- recursion (Galerkin)
- u ←u + PeH

- u ← Sν2(f, u) -- Smoother (post)

36
Option:UCRL#!

Numerical tests

  Reference Implementation of
 first leg of V(1,1) cycle

•  2D 5-point FV stencil
•  Linear interp./prol.
•  ~800 lines of FORTRAN
•  Horrible to code!

  Compare with standard implementation
•  Non-blocking send/recv
•  Overlap comm. & comp.
•  ~400 lines of FORTRAN

  Cray XE-6 at NERSC
•  Four levels of MG
•  256 x 256 and 64 x 64 fine grid

  I am not a good compiler!

37
Option:UCRL#!

  Equations solvers are too big to fail
  Multigrid is a shovel ready algorithm
  Good distributed memory implementations are hard and

getting harder with deep memory architectures
  Many-core node, data centric algorithms (loop fusion,

GPUs,…) are not well suited to FORTRAN/C
  Need compiler/tools/language support

•  of some sort …

Conclusion

38
Option:UCRL#!

Thank you

39
Option:UCRL#!

2D, 9-point stencil,1st leg of V(3,3) w/ bilinear restriction

Smooth 1"
Smooth 2"
Smooth 3"
Residual"
Restriction"

Send"
Receive"

Initial data"
Complete"

40
Option:UCRL#!

  Solver work complexity:
•  M iterations * flops/iteration
•  All components of MG can have O(N) work complexity

-  Optimal – its takes O(N) work to print the solution
•  1D C-cycle work complexity: C*N*(1+1/2+1/4+1/8…) < 2*C*N = O(N)

  Parallel complexity – work depth
•  V-cycle has O(log(N)) work depth

-  Optimal – Laplacian is fully coupled
-  ie, Green’s function has global support

-  Same as a dot product
•  F-cycles: O(log2 (N))

A word about parallel complexity

Size of these domains - parameter"

41
Option:UCRL#!

Solver Algorithm issues past and future

  Present and future: memory movement limited
  70’s had similar problems as today, and what we see as the future

•  Then: couldn’t afford memory – matrix free
•  Now: can’t afford to architect it and use it

  80’s were pernicious:
•  Ubiquitous uniform access memory and big hair …
•  Big memory did allow AMG and direct solvers to flourish

  Solutions that work on exa-scale machines … look to the 70’s
•  Low memory, matrix free, algorithms
•  Perhaps more regular grids as well

  Multigrid can solve with spatial/incremental truncation error accuracy
•  With work complexity of as low as ~6 residual calculations (work units)
•  On the model problem: low order discretization of Laplacian

-  Proven 30 years ago
•  “Textbook” multigrid efficiency

  No need to compute a residual (no synchronous norm computations)
  No need for CG’s synchronous dot products
  MG is weakly synchronized but this comes from the elliptic operator complexity

•  no way around it
  MG has O(N) work complexity in serial, O(log(N)) work depth in parallel

•  F-cycles, required for truncation accurate solutions, is O(log2(N))
  Work complexity looks less relevant now – “memory movement” complexity?

42
Option:UCRL#!

Verify 2nd order convergence
  2nd order spatial accuracy

•  Achieved with F-cycle MG solver
  Bz = 0, high viscosity
  Up to 1B cells (8B equations)

43
Option:UCRL#!

Multigrid performance - smoothers

  Multigrid splits the problem into two parts
•  Coarse grid functions (MG method proper) - takes care of scaling
•  Smoother (+ exact coarse grid solver) - takes care of physics

  Smoothers, where most of flops are – important for performance opt.
  Additive MG smoother requires damping

•  Be = (I –(B1 + B2 + …Bm)A)e
•  Good damping parameter not always available
-  eg, non-symmetric problems

•  Krylov methods automatically damp
-  But not stationary & have hard synchronization points

  Multiplicative smoothers (eg, Gauss-Seidel)
•  Be = (I – B1A) (I – B2A) … (I – BmA)e
•  Excellent MG smoother in theory
•  Distributed memory algorithm is a hard problem
-  Exploit nature of FE/FD/FV graphs …

44
Option:UCRL#!

Common parallel primitives for AMG

  Matrix matrix products:
•  A i+1 = PT Ai P
•  P = (I – ωD-1A)P0

  Computing (re)partitioning (ParMetis)
  Moving matrices (repartitioning)
  Maximal Independent Sets of Ak - MIS(k)

•  Useful mechanism for aggregation
•  Want coarsening factor of about 3
- This is perfect on regular hexahedra mesh

45
Option:UCRL#!

Unstructured geometric multigrid

  Select coarse points
•  MIS(1)

  Remesh (TRIANGLE)
  Use finite element shape

functions for restriction/
prolongation

  Example: 2D square
scalar Laplacian with
“soft” circle

46
Option:UCRL#!

  Multigrid has theoretically optimal parallel complexity
•  “Data movement” complexity?

  Log(N) computational depth - not enough parallelism available on coarse grids
  Coarse grid complexity is main source of inefficiency at extreme scales
  AMG issues: Support of coarse grid functions tend to grows

•  Independent sets are useful in coarsening
-  Independent set: set of vertices w/o edges between each other
-  Maximal: can not add a vertex and still be independent

•  The maximum independent set give 33 (27) aggs, every 3rd point on 3D cart. grid
-  This is perfect for SA - no support growth on coarse grids & recovers geo. MG

•  But support grows on unstructured problems, for example consider
-  stencil grows from 27 to 125 points (extra layer)
-  One vertex/proc – communicate with ~124 procs
-  33 vertex/proc – communicate with ~26 procs

  Thus, coarse grid memory complexity increases communication
  Amelioration strategy: use same basic idea as in parallel G-S:

•  Keep processor sub-domains from getting tiny (at least a few “stencils”)
•  Reduce active processors (eg, keep ~500 equations per processor)

-  This leads to need to repartition if original data was not recursively partitioned
-  No data locality with randomly aggregating sub-domains

Coarse grid complexity at extreme scales

