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Outline 

  Establish a lower bound on solver complexity 
•  Apply ideas to Magnetohydrodynamics (MHD) 

  Distributed memory & communication avoiding MG 
•  Asynchronous unstructured Gauss-Seidel 

  New algebraic multigrid (AMG) in PETSc 
•  Application to 3D elasticity and 2D Poisson solves 

  Data centric MG: cache aware & communication avoiding 
•  Application to 2D 5-point stencil V(1,1) cycle 
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Multigrid motivation: smoothing and coarse grid correction 

smoothing 

Finest Grid 
Restriction (R) 

Prolongation (P) 
(interpolation) 

The Multigrid 
V-cycle 

First Coarse Grid 

smaller grid 
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Multigrid Cycles 

V-cycle"
W-cycle"

F-cycle"One F-cycle can reduce  
algebraic error to order  
discretization error w/ as 
little as 5 work units: 
“textbook” MG efficiency"
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  Define error: E(x) ≤ Ed(x) + Ea(x) (discrete. + algebraic) 
  Assume error Ed(x) ≤ Chp (point-wise theory) 
  Example: 2nd (p=2) order discretization & coarsening factor of 2. 
  Induction hypothesis: require r ≥ Ea/Ed (eg, r=½) 
  Define Γ rate error reduction of solver (eg, 0.1 w/ a V-cycle) 

•  Can prove this or determine experimentally 
•  No Γ w/defect correction – can use Γ of low order method. 

  Use induction: Error from coarse grid: C(2h)2 + rC(2h)2  
•  Alg. Err. Before V-cycle: Ea < C(2h)2 + rC(2h)2 – Ch2 
- Actually should be +Ch2 but sign of error should be same 

•  And we want ΓEa = Γ(C(2h)2 + rC(2h)2 - Ch2) < rEd ≤ rCh2 
•  Γ = r/(4r + 3), 1 equation, 2 unknowns … fix one:  
-  eg, r = ½  Γ = 0.1 
-  If you want to use + Ch2 term then its Γ = r/(4r + 5) 

Discretization error in one F-cycle (Bank, Dupont, 1981) 
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  function u = MGV(A,f) 
•  If A coarsest grid  

-  u ← A-1f 
•  else 

-  u ← Sν1(f, 0)   -- Smoother (pre) 
-  rH ← PT( f – Au ) 
-  eH ← MGV( PTAP, rH )  -- recursion (Galerkin) 
-  u ←u + PeH 
-  u ← Sν2(f, u)   -- Smoother (post) 

  function u = MGF(Ai,f) 
•  if Ai is coarsest grid  

-  u ← Ai
-1f 

•  else 
-  rH ← R f 
-  eH ← FGV( Ai-1, rH )  -- recursion 
-  u ← PeH 
-  u ← u + MGV( Ai, f – Aiu ) 

Multigrid V(ν1,ν2) & F(ν1,ν2) cycle 
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  MG requires a smoother and coarse grid space 
•  Columns of P 

  Piecewise constant functions are easy 
•  “Plain” aggregation 

  Nodal aggregation, or partitioning 
  Example: 1D 3-point stencil 

Algebraic multigrid (AMG) - Smoothed Aggregation 

B" P0"

“Smoothed” aggregation: lower energy of functions"
For example: one Jacobi iteration: P  ( I - ω D-1 A ) P0"

Kernel vectors of 
operator (B)"
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Outline 

  Establish a lower bound on solver complexity 
•  Apply ideas to Magnetohydrodynamics (MHD) 

  Distributed memory & communication avoiding MG 
•  Asynchronous unstructured Gauss-Seidel 

  New algebraic multigrid (AMG) in PETSc 
•  Application to 3D elasticity and 2D Poisson solves 

  Data centric MG: cache aware & communication avoiding 
•  Application to 2D 5-point stencil V(1,1) cycle 
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Compressible resistive MHD equations in strong conservation form 

Diffusive 

Hyperbolic 

Reynolds no. 

Lundquist no. 
Peclet no. 
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Fully implicit resistive compressible MHD Multigrid – back to the 70’s 

  Geometric MG, Cartesian grids 
•  Piecewise constant restriction R, linear interpolation (P) 

  Red/black point Gauss-Seidel smoothers 
•  Requires inner G-S solver be coded 

  F-cycle 
•  Two V(1,1) cycles at each level 
•  Algebraic error < discretization error in one F-cycle iteration 

  Matrix free - more flops less memory 
•  Memory increasingly bottleneck - Matrix free is way to go 
•  processors (cores) are cheap 

-  memory architecture is expensive and slow (relative to CPU) 

  Non-linear multigrid 
•  No linearization required 

  Defect correction for high order (L2) methods 
•  Use low order discretization (L1) in multigrid solver (stable) 
•  Solve L1 xk+1 = f - L2 xk + L1 xk 
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Magnetic reconnection problem 

  GEM reconnection test 
•  2D Rectangular domain, Harris sheet equilibrium 
•  Density field along axis: (fig top) 
•  Magnetic (smooth) step 
•  Perturb B with a “pinch” 

  Low order preconditioner 
•  Upwind - Rusanov method 

  Higher order in space: C.D.  
  Solver 

•  1 F-cycle w/ 2 x V(1,1) cycles per time step 
-  Nominal cost of 9 explicit time steps 
-  ~18 work units per time step 

  Viscosity: 
•  Low:  µ=5.0D-04, η=5.0D-03, κ=2.0D-02 
•  High: µ=5.0D-02, η=5.0D-03, κ=2.0D-02 

  Bz: Bz=0 and Bz=5.0 

•  Strong guide field Bz (eg, 5.0)  
•  critical for tokomak plasmas 

Current density T=60.0"
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Bz = 0, High viscosity 

  Time = 40.0, Δt = 1. 
•  ~100x CFL on 512 X 256 grid 

  2nd order spatial convergence 
  Backward Euler in time 
  Benchmarked w/ other codes 
  Convergence studies (8B eqs) 
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Bz = 0, Low viscosity, ∇ ⋅ B = 0 

  Time = 40.0, Δt = .1 
  2nd order spatial convergence 
  ∇ ⋅ B = 0 converges 
  Kin. E compares well w/ other codes 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20  25  30  35  40

K
in

e
ti
c
 E

n
e

rg
y

t

GEM Reconnection Test : Low Viscosity Case

Wed May 17 14:17:45 2006

Samtaney
Jardin
Lukin

Sovinec



14 
Option:UCRL#!

Solution Convergence 
µ=1.0D-03, η=1.0D-03, Bz=0  
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  Residual history (1st time step), high viscosity, B = 0 
  F cycles achieve discretization error 

•  Super convergence 
  No Γ w/defect correct. 
  Use Γ for L1 

Residual history 
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Weak scaling – Cray XT-5 
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What do we need to make multigrid fast & scalable at exa-scale? 

  Architectural assumptions: 
•  Distributed memory message passing is here for a while 
•  Future growth will be primarily on the “node” 
•  Memory bandwidth to chip can not keep up with processing speed 

-  Need higher computational intensity - “flops are free”… 
  Multigrid issues: 

•  Distributed memory network (latency) is still critical (if not hip) 
-  Growth is on the node but distributed memory dictates data structures, etc. 

-  Node optimizations can be made obsolete after distributed data structures added 
-  Applications must use good distributed data models and algorithms 
-  Coarse grids must me partitioned carefully - especially with F-cycles 

-  Coarse grids put most pressure on network 
-  Communication avoiding algorithms are useful here 

-  But tedious to implement – need support compliers, source–to-source, DSLs, etc. 
•  Computational intensity is low - increase with loop fusion (or streaming HW?) 

-  Textbook V(1,1) multigrid does as few as 3 work unites per solve 
-  Plus a restriction and interpolation. 

-  Can fuse one set of 2 (+restrict.) & one set of 1 (+ interp.) of these loops 
-  Communication avoiding can be added … data centric multigrid 
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Case study: Parallel Gauss-Seidel Algorithm 

  Standard CS algorithm (bulk synchronous) graph coloring: 
•  Color graph and for each color:  
-  Gauss-Seidel process vertices 
-  communicate ghost values (soft synchronization) 

  3, 5, 7 point stencil (1D, 2D, 3D) just two colors (not bad) 
  3D hexahedra mesh: 13+ colors (lots of synchronization) 

•  General coloring also has pathological cache behavior 
  Exploit domain decomposition + nearest neighbor graph 

property (data locality) + static partitioning 
  Instead of computational depth 13+  

•  have computational depth about 4+ (3D) 
-  The number of processors that a vertex talks to 
-  Corners of tiling 

  Completely asynchronous algorithm 
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Locally Partition (classify) Nodes 

}Boundary nodes 

}Interior nodes 
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Schematic Time Line 
Note: reversible 
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Cray T3E - 24 Processors – About 30,000 dof Per Processor 

Time →"
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Cray T3E - 52 processors – about 10,000 nodes per processor 

Time →"
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Lesson to be learned form parallel G-S 

  Exploit finite sized domains 
•  Domains of order stencil width 

  Exploit static partitioning to coordinate parallel 
processing 

  Technique applicable to any level of memory hierarchy 
  Overlap communication and computation 
  Exploit “surface to volume” character of PDE graphs 



26 
Option:UCRL#!

Outline 

  Establish a lower bound on solver complexity 
•  Apply ideas to Magnetohydrodynamics (MHD) 

  Distributed memory & communication avoiding MG 
•  Asynchronous unstructured Gauss-Seidel 

  New algebraic multigrid (AMG) in PETSc 
•  Application to 3D elasticity and 2D Poisson solves 

  Data centric MG: cache aware & communication avoiding 
•  Application to 2D 5-point stencil V(1,1) cycle 



27 
Option:UCRL#!

Implementations 

  These ideas implemented in parallel FE framework Olympus 
& AMG solver Prometheus 

-  Gordon Bell prize 2004. 
  And in new unstructured geometric MG & smoothed 

aggregation AMG implementation in PETSc (PC GAMG): 
-  -pc_type gamg –pc_gamg_type sa 

•  Rely on common parallel primitives to 
- Reduce code size 
- Amortize cost of optimization & of porting to new 

architectures/PMs 
•  PETSc has rich set of common parallel primitives: 
- GAMG ~2,000 lines of code 
- Prometheus ~25,000 lines of code 
-  About 20K of this implements GAMG functionality 
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New aggregation algorithm for SA 

  My old aggregation algorithm is complex, don’t want to reimplement, want 
to use standard PETSc primitives if possible 

  Independent sets are useful in coarsening 
•  Independent set: set of vertices w/o edges between each other 
•  Maximal: can not add a vertex and still be independent 

  MIS(k) (MIS on Ak) algorithm is well defined & good parallel algorithms 
•  “Greedy” MIS algorithms naturally create aggregates 

  Rate of coarsening critical for complexity 
•  Slow coarsening helps convergence at expense of coarse grid complxty 
•  Optimal rate of coarsening for SA for 2nd order FEM is 3x 
-  Recovers geometric MG in regular grid 
-  Results in no stencil growth on regular grids 

  MIS(2) provides a decent coarsening rate for unstructured grids 
  MIS/greedy aggregation can lead to non-uniform aggregate sizes 
  New “aggregation smoothing” with precise parallel semantics and use of 

MIS primitives. 
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  Drop small edges from graph G induced by matrix 
•  G = D-½(AAT)D-½ 

•  If Gij < θ, then drop from Graph (eg, θ = 0.05) 
  Use MIS(2) on G to get initial aggregates 

  Greedy (MIS(1) like algorithm)  modified aggregates 

New aggregation algorithm for SA 
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Results of new algorithm Histogram of aggregate sizes 

643 Mesh (262144 nodes) 
First order hex mesh of 
cube 
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Weak Scaling of SA on 3D elasticity  

Cray XE-6 (Hopper) 
  Weak scaling of cube 

•  81,000 eqs / core 
  8 node “brick” elements 
  F-cycles 
  Smoothed aggregation 
  1 Chebyshev pre & post 

smoothing 
  Dirichlet on one face only 
  Uniform body force 

parallel to Dirichlet plane 

Performance 
Cores 27 216 1,728 13,824 
N (x106) 2.2 17.5 140 1,120 
Solve Time 4.1 4.9 5.6 7.0 
Setup (1) 5.2 6.1 13 28 
S (2) partit. 9.2 11 21 155 
Iterations 11 12 12 14 
Mflops/s/
core 

334 314 276 257 
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Prolongation + correct"

Smoothν2"

Coarse grid"
Fine grid"

Restrict (linear)"

Residual"

Smoothν1"

  MG algorithm: Sequential with parallel primitives 
•  Common way to think and code. 

  Problem: poor data reuse, low comp. intensity, much data movement 
  A Solution: loop fusion (eg, C. Douglas et. al.) 

•  “Vertical” partitioning of processing instead of (pure) “horizontal” 
-  Vertex based method with linear restriction & prolongation 
-  Fuse: one loop; course grid correction; 2nd loop 
-  Data dependencies of two level MG,1D, 3-point stencil: 

Data Centric Multigrid - V(1,1)  

MGV"

Off proc data to receive"
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Unlock"

Restrict (linear)"

Residual"

Smoothν1"

Coarse grid"

Fine grid"

Processor (memory) domain" Shared memory domain"

  Approach to fusing 1st leg of V-cycle, 1D, 3-point stencil 
•  One smoothing step with simple preconditioner (ie, no new data dependencies) 
•  Residual 
•  Restriction 

  Overlap communication and computation & aggregate messages w/ multiple states 
•  Communication avoiding 

  Multiple vectors (lhs, rhs, res, work) and vector ops (AXPY,etc.) not shown 
  Arrows show data dependencies (vertical, self, arrows omitted) 
  Processor domain boundary (left) w/ explicit message passing 
  Shared memory domain (right) “unlocks” memory when available 
  Boundary processing could be asynchronous 
  Multiple copies of some data required (not shown) at boundaries and ghost regions 

Hierarchical memory (cache & network) optimization - fusion 

Send"

Receive"
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C. Douglas et.al."

Chombo"

Multigrid V(ν1,ν2) with fusion 

  function u = MGV(A,f) 
•  If A coarsest grid  
- u ← A-1f 

•  else 
- u ← Sν1(f, u)   -- Smoother (pre) 
- r ← f – Au  
- rH ← Rr 
- eH ← MGV( RAP, rH )  -- recursion (Galerkin) 
- u ←u + PeH 

- u ← Sν2(f, u)   -- Smoother (post) 
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Numerical tests 

  Reference Implementation of  
                 first leg of V(1,1) cycle 

•  2D 5-point FV stencil 
•  Linear interp./prol. 
•  ~800 lines of FORTRAN 
•  Horrible to code! 

  Compare with standard implementation 
•  Non-blocking send/recv 
•  Overlap comm. & comp. 
•  ~400 lines of FORTRAN 

  Cray XE-6 at NERSC 
•  Four levels of MG 
•  256 x 256 and 64 x 64 fine grid 

  I am not a good compiler! 
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  Equations solvers are too big to fail 
  Multigrid is a shovel ready algorithm 
  Good distributed memory implementations are hard and 

getting harder with deep memory architectures 
  Many-core node, data centric algorithms (loop fusion, 

GPUs,…) are not well suited to FORTRAN/C 
  Need compiler/tools/language support 

•  of some sort … 

Conclusion 
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Thank you  
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2D, 9-point stencil,1st leg of V(3,3) w/ bilinear restriction 

Smooth 1"
Smooth 2"
Smooth 3"
Residual"
Restriction"

Send"
Receive"

Initial data"
Complete"
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  Solver work complexity: 
•  M iterations * flops/iteration 
•  All components of MG can have O(N) work complexity 

-  Optimal – its takes O(N) work to print the solution  
•  1D C-cycle work complexity: C*N*(1+1/2+1/4+1/8…) < 2*C*N = O(N) 

  Parallel complexity – work depth 
•  V-cycle has O( log(N) ) work depth 

-  Optimal – Laplacian is fully coupled 
-  ie, Green’s function has global support 

-  Same as a dot product 
•  F-cycles: O( log2 (N) ) 

A word about parallel complexity 

Size of these domains - parameter"
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Solver Algorithm issues past and future 

  Present and future: memory movement limited 
  70’s had similar problems as today, and what we see as the future 

•  Then: couldn’t afford memory – matrix free 
•  Now: can’t afford to architect it and use it 

  80’s were pernicious:  
•  Ubiquitous uniform access memory and big hair …  
•  Big memory did allow AMG and direct solvers to flourish 

  Solutions that work on exa-scale machines … look to the 70’s 
•  Low memory, matrix free, algorithms 
•  Perhaps more regular grids as well 

  Multigrid can solve with spatial/incremental truncation error accuracy 
•  With work complexity of as low as ~6 residual calculations (work units)  
•  On the model problem: low order discretization of Laplacian 

-  Proven 30 years ago 
•  “Textbook” multigrid efficiency 

  No need to compute a residual (no synchronous norm computations) 
  No need for CG’s synchronous dot products 
  MG is weakly synchronized but this comes from the elliptic operator complexity 

•  no way around it 
  MG has O(N) work complexity in serial, O( log(N) ) work depth in parallel 

•  F-cycles, required for truncation accurate solutions, is O( log2(N) ) 
  Work complexity looks less relevant now – “memory movement” complexity? 
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Verify 2nd order convergence 
  2nd order spatial accuracy 

•  Achieved with F-cycle MG solver 
  Bz = 0, high viscosity 
  Up to 1B cells (8B equations) 
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Multigrid performance - smoothers 

  Multigrid splits the problem into two parts 
•  Coarse grid functions (MG method proper) - takes care of scaling 
•  Smoother (+ exact coarse grid solver) - takes care of physics 

  Smoothers, where most of flops are – important for performance opt. 
  Additive MG smoother requires damping 

•  Be = (I –(B1 + B2 + …Bm)A)e 
•  Good damping parameter not always available 
-  eg, non-symmetric problems 

•  Krylov methods automatically damp 
-  But not stationary & have hard synchronization points 

  Multiplicative smoothers (eg, Gauss-Seidel) 
•  Be = (I – B1A) (I – B2A) … (I – BmA)e 
•  Excellent MG smoother in theory 
•  Distributed memory algorithm is a hard problem 
-  Exploit nature of FE/FD/FV graphs … 
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Common parallel primitives for AMG  

  Matrix matrix products: 
•  A i+1 = PT Ai P 
•  P = (I – ωD-1A)P0 

  Computing (re)partitioning (ParMetis) 
  Moving matrices (repartitioning) 
  Maximal Independent Sets of Ak - MIS(k) 

•  Useful mechanism for aggregation 
•  Want coarsening factor of about 3 
- This is perfect on regular hexahedra mesh 
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Unstructured geometric multigrid 

  Select coarse points 
•  MIS(1) 

  Remesh (TRIANGLE) 
  Use finite element shape 

functions for restriction/
prolongation 

  Example: 2D square 
scalar Laplacian with 
“soft” circle 
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  Multigrid has theoretically optimal parallel complexity 
•  “Data movement” complexity? 

  Log(N) computational depth - not enough parallelism available on coarse grids 
  Coarse grid complexity is main source of inefficiency at extreme scales 
  AMG issues: Support of coarse grid functions tend to grows 

•  Independent sets are useful in coarsening 
-  Independent set: set of vertices w/o edges between each other 
-  Maximal: can not add a vertex and still be independent 

•  The maximum independent set give 33 (27) aggs, every 3rd point on 3D cart. grid 
-  This is perfect for SA - no support growth on coarse grids & recovers geo. MG  

•  But support grows on unstructured problems, for example consider 
-  stencil grows from 27 to 125 points (extra layer)  
-  One vertex/proc – communicate with ~124 procs 
-  33 vertex/proc – communicate with ~26 procs 

  Thus, coarse grid memory complexity increases communication 
  Amelioration strategy: use same basic idea as in parallel G-S: 

•  Keep processor sub-domains from getting tiny (at least a few “stencils”) 
•  Reduce active processors (eg, keep ~500 equations per processor) 

-  This leads to need to repartition if original data was not recursively partitioned 
-  No data locality with randomly aggregating sub-domains 

Coarse grid complexity at extreme scales 


